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I.   INTRODUCTION 

Fractional calculus is a branch of mathematical analysis which deals with the research and applications of integrals and 

derivatives of arbitrary order. In recent decades, the field of fractional calculus has attracted the interest of researchers in 

diverse scientific fields such as mechanics, physics, electrical engineering, viscoelasticity, economics, bioengineering, and 

control theory [1-11]. However, fractional calculus is different from traditional calculus. The definition of fractional 

derivative is not unique. Common definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional 

derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional derivative [12-16]. 

Because Jumarie type of R-L fractional derivative helps to avoid non-zero fractional derivative of constant function, it is 

easier to use this definition to connect fractional calculus with traditional calculus. 

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

study the following special 𝛼-fractional integral: 

                                                                                    ( 𝐼0 𝑥
𝛼) [ [𝑝 + 𝑞𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] ,                                                            (1) 

where 0 < 𝛼 ≤ 1, and 𝑝, 𝑞 are real numbers. Using some techniques, the exact solution of this 𝛼-fractional integral can be 

obtained. In fact, our result is a generalization of classical calculus result. 

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([17]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                       (2) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                  (3) 
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where Γ( ) is the gamma function.  

In the following, some properties of Jumarie type of R-L fractional derivative are introduced. 

Proposition 2.2 ([18]):  If  𝛼, 𝛽, 𝑥0, 𝑐 are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                                  (4) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝑐] = 0.                                                                                  (5) 

Next, we introduce the definition of fractional analytic function. 

Definition 2.3 ([19]): If 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([20]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                                                                   𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                            (6) 

                                                                                  𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  .                                                           (7) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                                   = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                                  (8) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                 = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                                      (9) 

Definition 2.5 ([21]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                                (10) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                  (11) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                                (12) 
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and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                                 (13) 

Definition 2.6 ([22]): If 0 < α ≤ 1, and 𝑥 is a real variable. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                                (14) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼). On the other hand, the 𝛼-fractional 

cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑘𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

(−1)𝑛

(2𝑛)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛
∞
𝑛=0

∞
𝑛=0 ,                                        (15) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

(−1)𝑛

(2𝑛+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)
∞
𝑛=0

∞
𝑛=0  .                             (16) 

Definition 2.7 ([23]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) be two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥𝛼))
⨂𝛼 𝑛

=

𝑓𝛼(𝑥𝛼)⨂𝛼 ⋯ ⨂𝛼 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥𝛼). On the other hand, if 𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) = 1, then 𝑔𝛼(𝑥𝛼) is 

called the ⨂𝛼  reciprocal of 𝑓𝛼(𝑥𝛼), and is denoted by (𝑓𝛼(𝑥𝛼))
⨂𝛼 (−1)

. 

III.   MAIN RESULT AND EXAMPLES 

In this section, we find the exact solution of a special fractional integral. On the other hand, we propose some examples to 

illustrate our result. 

Theorem 3.1: Suppose that 0 < 𝛼 ≤ 1, and 𝑝, 𝑞 are real numbers. 

Case 1. If 𝑝2 > 𝑞2, then 

                                             ( 𝐼0 𝑥
𝛼) [ [𝑝 + 𝑞𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] =

2

𝑝−𝑞
∙ √

𝑝−𝑞

𝑝+𝑞
∙ 𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (√

𝑝−𝑞

𝑝+𝑞
𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)).                   (17) 

Case 2. If 𝑝2 < 𝑞2, then 

( 𝐼0 𝑥
𝛼) [ [𝑝 + 𝑞𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] =

1

𝑞−𝑝
∙ √

𝑞−𝑝

𝑞+𝑝
∙ 𝐿𝑛𝛼 (|[𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) + √

𝑞+𝑝

𝑞−𝑝
] ⨂𝛼 [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) − √

𝑞+𝑝

𝑞−𝑝
]

⨂𝛼 (−1)

|) .  (18) 

Proof  Case 1. If 𝑝2 > 𝑞2, then 

     ( 𝐼0 𝑥
𝛼) [ [𝑝 + 𝑞𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] 

= ( 𝐼0 𝑥
𝛼) [ [𝑝 ([𝑐𝑜𝑠𝛼 (

1

2
𝑥𝛼)]

⨂𝛼 2

+ [𝑠𝑖𝑛𝛼 (
1

2
𝑥𝛼)]

⨂𝛼 2

) + 𝑞 ([𝑐𝑜𝑠𝛼 (
1

2
𝑥𝛼)]

⨂𝛼 2

− [𝑠𝑖𝑛𝛼 (
1

2
𝑥𝛼)]

⨂𝛼 2

)]

⨂𝛼 (−1)

]  

= ( 𝐼0 𝑥
𝛼) [ [(𝑝 + 𝑞) [𝑐𝑜𝑠𝛼 (

1

2
𝑥𝛼)]

⨂𝛼 2

+ (𝑝 − 𝑞) [𝑠𝑖𝑛𝛼 (
1

2
𝑥𝛼)]

⨂𝛼 2

]

⨂𝛼 (−1)

]  

= ( 𝐼0 𝑥
𝛼) [ [(𝑝 + 𝑞) + (𝑝 − 𝑞) [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)]

⨂𝛼 2

]

⨂𝛼 (−1)

⨂𝛼 [𝑠𝑒𝑐𝛼 (
1

2
𝑥𝛼)]

⨂𝛼 2

]  
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=
2

𝑝−𝑞
∙ ( 𝐼0 𝑥

𝛼) [ [
𝑝+𝑞

𝑝−𝑞
+ [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)]

⨂𝛼 2

]

⨂𝛼 (−1)

⨂𝛼 ( 𝐷𝑥0 𝑥
𝛼) [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)]]   

=
2

𝑝−𝑞
∙ √

𝑝−𝑞

𝑝+𝑞
∙ 𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (√

𝑝−𝑞

𝑝+𝑞
𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)) . 

Case 2. If 𝑝2 < 𝑞2, then 

                       ( 𝐼0 𝑥
𝛼) [ [𝑝 + 𝑞𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] 

                  = ( 𝐼0 𝑥
𝛼) [ [(𝑞 + 𝑝) − (𝑞 − 𝑝) [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)]

⨂𝛼 2

]

⨂𝛼 (−1)

⨂𝛼 [𝑠𝑒𝑐𝛼 (
1

2
𝑥𝛼)]

⨂𝛼 2

]  

                 =
2

𝑞−𝑝
∙ ( 𝐼0 𝑥

𝛼) [ [
𝑞+𝑝

𝑞−𝑝
− [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)]

⨂𝛼 2

]

⨂𝛼 (−1)

⨂𝛼 ( 𝐷𝑥0 𝑥
𝛼) [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)]]  

                =
2

𝑞−𝑝
∙

1

2
√

𝑞−𝑝

𝑞+𝑝
𝐿𝑛𝛼 (|[𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) + √

𝑞+𝑝

𝑞−𝑝
] ⨂𝛼 [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) − √

𝑞+𝑝

𝑞−𝑝
]

⨂𝛼 (−1)

|)  

               =
1

𝑞−𝑝
∙ √

𝑞−𝑝

𝑞+𝑝
∙ 𝐿𝑛𝛼 (|[𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) + √

𝑞+𝑝

𝑞−𝑝
] ⨂𝛼 [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) − √

𝑞+𝑝

𝑞−𝑝
]

⨂𝛼 (−1)

|) .                                   Q.e.d. 

Example 3.2: If 0 < 𝛼 ≤ 1, then 

                                                  ( 𝐼0 𝑥
𝛼) [ [3 + 2𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] =

2

√5
∙ 𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (

1

√5
𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼)).                                  (19) 

And 

     ( 𝐼0 𝑥
𝛼) [ [2 − 4𝑐𝑜𝑠𝛼(𝑥𝛼)]⨂𝛼 (−1)] = −

√3

6
∙ 𝐿𝑛𝛼 (|[𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) +

1

√3
] ⨂𝛼 [𝑡𝑎𝑛𝛼 (

1

2
𝑥𝛼) −

1

√3
]

⨂𝛼 (−1)

|) .               (20) 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions, 

we study a special fractional integral. By some techniques, we can obtain the exact solution of this fractional integral. 

Moreover, our result is a generalization of traditional calculus result. In the future, we will continue to use Jumarie type of 

R-L fractional calculus and the new multiplication of fractional analytic functions to solve the problems in fractional 

differential equations and applied mathematics. 
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